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ABSTRACT

Homogeneity analysis, or multiple correspondence analysis, is

usually applied to k separate variables. In this paper we apply it

to sets of variables by using sums within sets. The resulting

technique is called OVERALS. It uses the notion of optital scaling,

with transformations that can be multiple or single. The single

transformations consist of three types: nominal, ordinal, and

numerical. The corresponding OVERALS computer program minimizes a

least squares loss function by using an alternating least squares

algorithm. Many existing linear and nonlinear multivariate analysis

techniques are shown to be special cases of OVERALS. An application

to data from an epidemiological survey is presented.

Keywords: homogeneity analysis, correspondence analysis, optimal

scaling, transformation, alternating least squares, canonical

correlation analysis, principal component analysis
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INTRODUCTION

Approximately ten years ago Young, De Leeuw, and Takane started

to apply the optimal scaling ideas, that had originated in

multidimensional scaling, to multivariate analysts. This made it

possible to link the developments in multidimensional scaling with

older but related developments in multivariate analysis centering

around the notion of coding categorical variables by using matrices

with zeroes and ones. The resulting ALSOS (Alternating Least

Squares with Optimal Scaling) apprnach to multivariate data

analysis was based on the idea of alternating the transformation or

quantification of variables with the fitting of model parameters in

an iterative way, using least squares loss functions. This resulted

in a series of programs for nonlinear multivariate analysis, with

special programs for additivity analysis, multiple regression,

canonical correlation analysis, principal component analysis, and

factor analysis. $ review of the general ALSOS approach and of the

results that have )een obtained, is given by Young (1981).

The ALSOS approach to algorithm construclon is quite general,

but the framework is a bit too narrow for some applications in

multivariate analysis, e.g. correspondence analysis (Benzicri et

al., 1973; Benzicri et al., 1980; Nishisato, 1980; Lebart,

Morinaux, acid Warwick, 1984; Greenacre, 1984). Although

correspondence analysis does not fit directly into the ALSOS

approach, it is still possible to relate it to the computational

developments in ALSOS. This has been done in considerable detail by
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Gifi (1981), which is summarized briefly in De Leeuw (1984). In

this paper we discuss some of the more specific principles of

algorithm construction used by Gifi, and we apply them to OVERALS,

a very general nonlinear multivariate analysis technique, covering

both ALSOS and correspondence analysis.

The major feature of the Gifi-system for nonlinear multivariate

analysis is that it takes homogeneity analysis as its starting

point. Homogeneity analysis, also known as multiple correspondence

analysis, is discussed in great detail in the references on

correspondence analysis mentioned above, and by Tenenhaus and Young

(1984). Gifi introduces homogeneity analysis as the cornerstone of

multivariate data analysis, and then specializes to other

multivariate techniques by imposing various forms of restrictions

on the parameters. Imposing restrictions is one way of sealing with

Prior information. As a consequence the number of parameters is

reduced, which generally improves both the stability and the

interpretability of the solution. Tie most important restrictions

are the additivity restrictions. These are discussed in detail in

this paper in the section on sets of variables. In order to fit the

classical linear techniques smoothly into the system we also need

the rank-one restrictions, which can be combined with additivity

restrictions to produce a very general class of techniques. Finally

measurement restrictions are build into the system, in much the

same way as in ALSOS. We shall treat these notions in more detail

in the section on rank-one restrictions and optimal scaling.

The technique that results if we minimize the general least

7
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squares loss function of homogeneity analysis under the types of

restrictions mentioned above is called OVERALS. We have to be

careful here, because terminological confusion is possible at this

point. In the first place we discuss a restricted minimization

problem, which we call the OVERALS pr,t_lem. In the second place we

propose an alternating least squares algorithm to solve this

minimization Problem. This is called the OVERALS algorithm. And

thirdly we have written a FORTRAN computer program implementing

this algorithm. This 's the OVERALS program. It is quite important

to keep these .hree meanings of the word OVERALS apart, although in

this paper the context will always indicate which one of the three

meanln,s we are using at any given moment.

HOMOGENEITY ANALYSIS

Homogeneity analysis or multiple correspondence analysis is a

method to maximize the homogeneity of a number of variables

(Guttman, 1941; De Leeuw, 1973, chapter 3; Nishisato, 1980, chapter

5; Meulman, 1982; Lebart et al., 1984, chapter 6; Greenacre, 1984,

chapter 5). To define homogeneity analysis we need some notation.

SuPoose we have an n x m multivariate data matrix, with rows

corresponding to objects and columns to variables. Assume that

variable .1 takes kj different values (has kj categories) and define

the matrix Gj as the n x kj indicator aatrix corresponding to this

variable. An indicator matrix indicates which categories are scored

by which objects. Rows correspond to objects, columns to

S
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categories. Its elements consist of zeroes (not scored) and ones

(scored).

Homogeneity analysis determines quantifications or

transformations of the categories of each of the variables such

that homogeneity is maximized. A definition of homogeneity follows.

Let us use the vector yj , with kj elements, for the

quantifications of the categories of variable j. Expression Gjyj

represents a single quantification or transformation of the n

objects, induced by variable j. Without further conditions on the

yj the quantification is restricted only by the ties in the data,

i.e. objects in the same category get the same quantification. In

homogeneity analysis we work with p simultaneous quantifications

for each variable (or, to put it differently, with p-dimensional

quantifications). Let us collect them in kj x p matrices Y
J,

and

let us call these the multiple nominal quantifications of variable

j. Then the matrices GjYj induce m multiple quantifications of the

objects. Perfect homogeneity is defined if all multiple

ouantifications of the objects are the same, say X (n x p), thus if

X = G1Y1 = GmYm, (cf. De Leeuw, 1973, chap. 2). Homogeneity

analysis minimizes the loss of homogeneity, with loss defined in

terms of squared deviations, over normalized object

quantifications:

M
(1) min a(X,Y) SSQ(X-G T.),

j=1
J

subject to the condition that XIX = nI and u'X = 0,

where u is a column with n elements equal to one. Symbol SSQ(.) is

9
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used for the sum of squares of the elements of a vector or matrix.

The condition u'X = 0 guarantees tnat X is in deviations from the

column means, while X'X = nl makes the columns of X uncorrelated,

with variances equal to one. Elements of X are called object

scores. At this point we do not go further into the formal

development or homogeneity analysis, or into computational

implementations. We come back to this at a later stage of the

paper.

RANK-ONE RESTRICTIONS AND OPTIMAL SCALING

In homogeneity analysis with the dimensionality p > 2 we work

with multiple quantifications. Each dimension adds another

quantification of the categories of each variable, and the

different quantifications of the same variable have no simple

relation to each other. This makes interpretation sometimes

complicated, especially in the case of variables whose categories

have a clear ordinal or even numerical interpretation. For this

reason we introduce rank-one restrictions into homogeneity

analysis, which make it possible to have multidimensional solutions

for object scores with only a single quantification (or optimal

.caling) for categories. As another benefit the use of rank-one

restriction:, makes it possible to relate homogeneity analysis to

many of the classical multivariate techniques. Matoematically the

rank-one restriction (for variable j) is

(2) Yj 0 ziaj',
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with zj the kj-vector of single category quantifications , and aj

the o-vector of weights. Thus the quantification matrix Yj is

restricted to be a rank-one matrix. The columns of Y, are all the

same, apart from weight factors.

If no further conditions are imposed on the single quantications

zj we call them single nominal. Incorporating prior ordinal

information on the categories can be done by requiring that the

elements of zj are in the appropriate oraer. Tnis defines the

single ordinal treatment of a variable. Single numerical

restrictions can also be quite useful. We may require that zj is

linear with known scores for the categories. All these restrictions

are discrete, because variables have a restricted number or

categories. There are consequently many tied ooservations, and ties

in the data remain ties in the representation. In the continuous

treatment of variables, as in the primary approach to ties of

Kruskal (1964), ties can become untied. Because homogeneity

analysis is firmly based on the indicator matrix, it does not allow

untying of tie!, and consequently our approach has no continuous

treatment of variables.

The combination of homogeneity analysis with the rank-one

restrictions defines a form of nonlinear principal component

analysis. We shall discuss this as one of the various special cases

below, but first we introduce theimplementation of sets of

variables into homogeneity analysis.
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SETS OF VARIABLES

In many applications of multivariate analysis the variables are

grouped in a natural way into sets of variables. Think of multiple

regression for instance, where one has a number of independent

variables, or of canonical correlation analysis. One way of dealing

with sets of variables in homogeneity analysis is by using

interactive coding, familiar from the analysis of variance.

Variables which belong together are collected as subvariables of

one interactive variable, and the analysis is applied to the

interactive codings instead of to the original variables.

For a set of r subvariables the interactive variable has

categories corresponding to all cells of the r-dimensional cross

table. Thus using interactive coding can rapidly lead to a very

large number of categories. For 5 subvariables with 5 categories,

the interactive variable has 3125 categories, which is far too much

for any data analysis technique. Almost all cells will be empty,

especially if we cross this gigantic variable with others.

Nevertheless we may still feel that the subvariables really belong

together for the purposes of the analysis we are interested in, and

that they form a set of variables in a natural way. We can try to

avoid the empty cell problem by imposing additivity restrictions on

the interactive variables. In analysis of variance terminology this

means that we require that the category quantifications for the

interactive variables consist of main effects only, without

interactions between subvariables.

12
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We now translate the above into mathematical notation. The index

set J 11,...,m for variables is partitioned into subsets

J(1),...,J(k), where k is the number of sets of variables. We use t

for the index indicating sets, thus in the sequel alway ,1,...,k.

the homogeneity analysis problem with k sets of variables is now

defined (De Leeuw, 1973) as

(3) min 0(X,V) It SSQ(X-lievoysl,

subject to the condition that X'X = nI and u'X = 0.

Subvariables within sets are treated by (3) as additive. Thus,

conceptually, sets of variables are dealt with by 4'.r.st creating

interactive variables, and then by inoosing additivity

restrictions. Therefore all within set interactions vanish if

variables are coded as concatenated indicators. It is also possible

to requim that only some within set interactions vanish by leaving

some of the interactive codings intact. For instance a set with 4

variables can be coded as 6 concatenated indicators corresponding

with all pairs of variables, or as two concatenated indicators, the

first one corresponding with three subvariables, and the second one

with the remaining subvariable.

THE DEFINITION OF OVERALS

In the introduction we defined OVERALS as the combination of

homogeneity analysis with optimal scaling and additivity

restrictions. Now we are ready for a more formal definition. This

13
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min a(X,Y) = ItSSQ(X-liej("Gjy,

subject to the condition that XIX = n1 and u'X = 0, and

for some (sub)variables Yj = zjaj' and zj c Cj,

which is the definition of the OVERALS problem. In (4) we have used

the general notation zj a C to indicate that there may be

measurement restrictions on the category quantifications

(numerical, ordinal, and nominal). The measurement level in (4) is

consequently mixed, not only because we can choose between single

nominal, single ordinal, and single numerical, but also because we

have multiple nominal as an option as well. We still consider (4)

as a form of homogeneity analysis, with restrictions, and we have

implemented a technique for solving the OVERALS problem in the

OVERALS computer program. In the following section we discuss the

algorithm used in this program.

THE OVERALS ALGORITHM

In this section we explain how the OVERALS problem is solved by

using an alternating least squares (ALS) algorithm. First we solve

t. multiple OVERALS problem, which is the OVERALS problem with all

measurement levels multiple nominal. Then we solve the general

OVERALS problem (with variables having multiple and/or single

measurement levels, from now on briefly called multiple and single

variables) by imposing rank-one restrictions on the multiple
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quantifications corresponding with single variables.

First we introduce some notation which is more convenient than

the summation notation within sets used in (3) and (4). We write

all Gj corresponding with varia,les in set t next to each other in

the matrix G and the Yj for set t above each other in Yt. Thus

GY,x is the sum of all Gej in set t.

The stationary equations for the OVERALS Problem (4) are the

following. The optimal object scores X, for given Yj, must satisfy

the equation

(5) X@ = miiiat,

with 0 a symmetric matrix of Lagrange multipliers, and M =

the operator which transforms a vector into deviations from the

mean. Equation (5) is obtained by differentiating the loss function

with respect to X under tne restrictions that usX = 0 and )0( a nI.

If we write Z for the right-hand side of (5), then premultiplying

both sides by their transposes gives nO2 .'Z. Thus 0 =

(Z'Z/n)1/2, and X = n1/22(2'2)-1/2. Computing the optimum X is

actually a form of the Orthogonal Procrustes problem, for which the

solution is classical (Cliff, 1966). The right hand side of (5) is

the average of the multiple transformed sets of variables, where

each transformed set is the sum of a number of transformed

variables. The optima! matrix of object scores is an orthogonalized

version of this average.

The optimal category quantification of variable j of set t is

5
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(6) Yj = ITIGpX-V0), with

Vtj = Gat - Gej and Dj = Gj'Sj.

In order to show that (6) does indeed give tne optimal multiple

quantifications we write

(7) SSQ(Xtiat) = SSQ((X-Vtj)-GjYj) =

SSWX-V0)-Gjij) + tr (YrYj)'0j(Y1 -Y1).

Clearly the minimum over Yj is obtained by setting Yj equal to Yj.

The matrix D. is diagonal, and contains the frequencies of the

different categories of variable j. The operator Elj-lGjs averages

over objects belonging to the same category, i.e. computes category

means. We average the object scores X minus a correction term Vtj

for the other variables in set t. Note that in the 'one variable in

each set' case, the correction term is zero. In that case the

optimal category quantification is the average or centroid of the

object scores of all objects in the category.

The two equations (5) and (6) illustrate the centroid principle

which is one of the leading principles in correpondence analysis.

Category quantifications are centroids of objects scores (with a

correction for other variables, if necessary), and object scores

are averages of quantified variables (with an orthogonalization, if

necessary). The multiple OVERALS problem is solved an ALS-

procedure which alternates step (5), combined with the Procrustes

orthogonalization, and step (6). The centroid principle in the

stationary equations (5) and (6) is implemented by a reciprocal

averaging algorithm.
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The general OVERALS problem is the multiple OVERALS algorithm

with an extra inner iteration step for single variables (i.e.

variables with rank-one restrictions) added. The inner iteration

step consists of estimation of weights and single category

quantifications, again it alternates two steps of an inner ALS-

procedure. We could continue the inner iteration until convergence

before proceeding with outer iterations again, but computational

experience has indicated that performing only one inner iteration

is generally more efficient (cf. Takane, Young, and De Leeuw,

1980).

The multiple category quantifications (6) are computed for all

v?' ables, both multiple and single. Weights and single category

quantifications are solved for each single variable separately. In

order to show how this must be done optimally, we use the

partitioning of the sum of squares in (7), assuming now that Yj is

the currently optimal multiple quantification, and zj the current

single quantification. Thus

(8) SW(X -i) = SSQ((X- Vtj) -GjYj) =

SSQ(((40)Gpfj) tr (Yrajzj')lDj(YrajzjI)

Define

(9) ij = (zi'Djzj)-1Yj'Djzj.

The last term of (8) can now be written as

(10) tr (Yrajzji)'Dj(YrajzjI) =

tr (YrijziTyYrajzjI) + zj'Djyaraj).(araj).
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which shows that ij is optimal. In the same way we can define

(11) ij = (aj'aj)-1Yjaj,

and write

(12) tr (Yj- ajzj')'Dj(Yj- ajzj') =

tr (Yrajij.)11j(Y3-ajij.) + aj'aj(ij-zpsyirmj).

Now Yj and aj are the current values of the multiple category

quantifications and the weights, respectively. We see from (12)

that (11) is optimal for single nominal variables. For single

ordinal variables the transformations are obtained by using

monotone regression (m), with weights D3, on the single nominal

solution. Compare also Young (1981). The regression is based on the

original ordering of the categories in the data matrix. Thus for

single ordinal the optimum is

(13a) i = MR{(aisai)-lYiaj},

and for single numerical transformations we use linear regression

(LR) instead. Thus

(13b) i = Llt{(ajsaj)-1Yjaji.

Summarizing the OVERALS algorithm we have: an alternating least

squares procedure estimating the objects scores plus

orthogonalization (equation 5), and for each variable the multiple

category quantifications (equation 6). If there are single

variables the single category quantifications and the weights are

8
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also estimated in a separate ALS-procedure of which one step is

carried out in each major iteration. Then (6) is followed by (9),

(11) and (13).

RELATIONSHIP BETWEEN OVERALS AND EIGENVALUE PROBLEMS

In this section we discuss the OVERALS loss function for the

multiple case, and the general mixed case a bit more in detail. We

do this to relate the technique to various more familar concepts

from linear multivariate analysis. More specifically we want to

investigate if and in how far OVERALS solves eigenvector-eigenvalue

problems.

Let us start with multiple OVERALS. Remember that G was the

indicator matrix of variable j, and at was the supermatrix

containing all Gj in set t, obtained by writing the Gj next to each

other. It follows directly from (4) that the minimum of the loss

over the It, for fixed X, is attained at It = [Gt] +X, with [.]+

denoting the Moore-Penrose inverse. Substituting in (4) gives

(14) m(X,*) = It tr X.II-PtlX,

with pt = War, the oethogonal projector on the subspace spanned

by the columns of Gt. Minimization of (14) over X, subject to the

normalization conditions specified in (4), gives the stationary

equation

(15) Et Oftmlx 'ft'

.6 9
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again with as a symmetric matrix of Lagrange multipliers. This shows

that the optimal X is a basis for the eigenspace spanned by the p

principal elgenvectors of the matrix MP*M, with P* the average of

the projectors TheThe minimum loss is given by

(16) a(*,*) = n10{1 - P-ilsks}.

with X
s

the p largest eigenvalues of MP*M (and also of 0). This

shows that solving the multiple OVERALS problem corresponds to

solving the eigenvalue problem for MP*M, and that the minimum loss

is a linear function of the average of the p largest eigenvalues.

In fact it suffices to consider the eigenvalue problem for P*, as

MP*M is the deflated P* matrix with the first trivial eigenvector,

which has all elements the same, removed. The eigenvalue problem

could also be solved directly, by using a Jacobi or Householder-

Givens algorithm, but this is quite impractical in many situations,

because the number of objects can be very large indeed.

It is of considerable interest to observe that instead of

solving the eigenvalue problem for IL* in order to find the optimal

X, we can also solve the generalized eigenvalue problem for the

pair (C,kD) in order to find the optimal Y. Here C is the Burt-

metrix of the problem, defined by C = GI, with G having all Gt

next to each other (or, what amounts the same thing, all Gj next

to each other). Matrix C contains the bivariate cross tables of all

pairs of variables. Compare Gifi (1981, p 62), or Greenacre (1984,

p 140). Matrix 0 is block-dial:lona% it is the direct sum of the

GI 'G
2* Thus the optimal Y so .sfies

20
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(17) CY = kDY45.

The proof is short. Because P*X = k-1GD-IGIX = Xo and D-1G'X = Y we

have GY = kXO. Premultiplying both sides with D-1G' gives D-1CY =

kXO, which is (17). Using (17) may be at least in some situations,

an attractive way to compute the optimal solutions of the

homogeneity analysis problem with sets of variables. In other

cases, however, this generalized eigenvalue problem may be simply

too large. Above that the whole development only applies if all

variables are treated as multiple.

For OVERALS with single quantifications only we follow a similar

procedure to study the optimal solutions. We introduce some new

notation to do this efficiently. Define, for each variable, the

vector qj = Gjzj. The qj are normalized induced scores for objects,

or transformed variables. They are organized as columns of matrices

Qt, one for each set. In a similar way the weight vectors aj are

organized as rows of matrices At. We may rewrite the OVERALS

problem (4), supposing that all variables are single, as

(18) min a(X,Q,A) = itSSQ(X-201),

subject to the condition that XIX = nI and u'X = 0,

zj E Ci.

Now problem (18) is very closely related to our previous OVERALS

problem (4). We merely have to replace Et in our previous formulas

by Qt and It by ButBut this means that (15) also applies with ft =

gtigIr. Also a(*.*) is defined as in (16) from the eigenvalues of

the average projector P*. If we write all at next to each other in

21
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Qr then we can also compute a(*,*) as in (16) from the generalized

eigenvalues of C = with respect to k times the direct sum of

the There is one considerable difference between (18) and

its predecessors, however. The vectors qj are functions of the zj,

which means that the average projector P* and the Burt matrix C are

a function of the single category quantifications as well. Thus we

can write

(19) a(*,Q,*) = nkp (1-b-lisks(01

Result (16) shows that multiple OVERALS amounts to computing

eigenvalues of a given matrix, result (19) shows tnat single

OVERALS means choosing single quantifications of the variables in

such a way that the sum of the p largest eigenvalues is maximized.

Of course Q is constant if all variables nappen to be single

numerical.

We can now combine our results so far to obtain the

interpretation of the minimum loss for the mixed case, in which

some variables are single and some are multiple. But we shall

introduce a somewhat different terminology, which makes the

comparison more interesting. We use the notion that a multiple

variable can De considered as a number of copies of a single

variable. Or, somewhat differently, a multiple variable is really a

set of single variables. This idea is due to De Leeuw (1983, 1984).

Suppose Yj is a given multiple quantification. We can decompose

V3. a matrix with k3 rows and p columns, in many different ways in

the form Yj = ZjAj. One solution simply takes the columns of Zj as

22
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the normalized version of the columns of Yj, and takes Aj equal to

the diagonal matrix of standard deviations of these columns. But Zj

could also be an orthogonalized version of Yj, with Aj symmetric or

upper-triangular, and so on. In any case the decomposition can be

written as

(20a)
Yj 4.zjrajr11

and thus

(20b) GjYj qjrairs.

Here index r is used for the columns of Zj and the rows of A. in

the decomposition of Yj. If there are pi such rows, then (20a) and

(20b) show that having a multiple variable is equivalent to

having pj single variables with the same indicator matrix Gj, i.e.

pj copies. Note that in general we can take pj 4 min(p,kj).

By using the idea of copies we reduce the mixed problem, with

both single and multiple variables, to the single OVERALS problem,

and we can use the interpretation of this problem in terms of

eigenvalues of the Burt-tables and average projectors defined by

means of the cit given above. An additional benefit of use of copies

is that it becomes easy to define multiple ordinal and multiple

numerical variables. We can fix the measurement level of each of

the factors in the decomposition separately. Thus we can, for

instance, use one variable three times in its set, once ordinal and

two times nominal. If all copies of a variable are ordinal, then it

is multiple ordinal. This opens many new possibilities, but we
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merely outline them here, because the use of copies is not yet

implemented in the program OVERALS. If one wants to use the notion

of copies in the program, one actually has to create the copies in

the data set.

We have shown in this section that OVERALS can be interpreted in

terms of eigenvalue problems. In the mixed multiple and single

numerical case these eigenvalue problems could be defined

completely in terms of the data. OVERALS then becomes the

simultaneous iteration method for computing a few of the dominant

eigenvalues of a matrix, and it consequently converges to the

global minimum of its loss function (Rutishauser, 1969). In the

other cases the eigenvalue problem varied with the single

quantifications, and we had to choose the quantifications in such a

way that the dominant eigenvalues were maximized. This is a

nonlinear problem, which may have many local minima. We do not know

how serious tne local minimum problem is. All nonlinear

multivariate analysis problems, except the eigenvalue problems,

have to take the existence of local minima into account. The little

research that has been done, by Segijn (1985) and Kuhfeld (1985) in

the PRINCALS/PRINNAL framework, shows that local minima do not

appear to be a serious problem. But it is not known how general

this finding is.

THE COMPUTER PROGRAM OVERALS

The OVERALS algorithm as described above has been implemented in

24
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a computer program which is also called OVERALS (Verdegaal, 1986).

It has been developed at the Department of Data Theory by the

authors of the article, and it has been written in FORTRAN.

In the OVERALS program three initializations are performed. The

object scores X are initialized by using random values (the user

determines p). For single variables the quantifications are set

equal to the standardized versions of the original data. The

multiple category quantifications are initialized as zero. The

program starts by computing a solution which has all multiple

variables multiple nominal and all single variables single

numerical. After convergence of these initial iterations the

measurement levels of the single variables are adjusted to the

types specified by the user, and the iterations are restarted. This

strategy seems to prevent the occurrence of local minima rather

effectively, at least in the case in which the measurement level of

the variables is single ordinal. A random initialization for the

category quantifications is also possible. In case of single

nominal variables we advise the use of one or several random

starts.

In the program the iteration process is stopped when the loss

difference between consecutive main steps is small enough. The user

may define 'small enough'.

Another feature of the OVERALS program is the final rotation.

After convergence the object scores X and the category

quantifications Y, are rotated in such a way that the X are the

eigenvectors of the matrix NMI, and not merely a rotation of these



www.manaraa.com

Overals

22

eigenvectors. The eigenvalues of this matrix, which are called the

generalized canonical correlations by De Leeuw (1984), are a

measure of the goodness-of-fit of OVERALS. To find some indication

for the significance of these statistics. De Leeuw and Van der Burg

(1985) have studied their permutation distribution. They found that

the significance testing methods they developed seemed to work

rather well, but their study has a somewhat limited scope.

GEOMETRY OF OVERALS

In the preceding sections we have discussed object scores and

multiple and single category quantifications. How do we interpret

the valu, of these p.?.rameters geometrically? Let us make pictures

in p-Dimensional space (in practice, of course, we can only plot

two- or three-dimensional projections of these pictures). The

object scores X define a cloud of n points in this space, with unit

variance in all directions. The projections on the different

dimensions are uncorrelated.

We can compute the centroids of the oojects which correspond to

the same category of each variable (cf. Figure 7). We call these

values the category centrolds, in formula rows of Di-lyX. In

general these cent, ,as are different from the multiple category

quantifications given in (6), except if there is only one variable

1,n the set. If we put category centroids and multiple category

quantifications together in one plot, we can 'see' the influence of

the other variables in the set.

26
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The single category quantifications zj, together with the

weights aj, can be used to construct the rank-one quantifications.

By plotting the multiple category auantifications and the rank-one

quantificat. 'jai' in a single plot, we see tne effect of the

rank-one restrictions. The rank-one quantifications are on a line

through the origin, with direction cosines proportional to aj. The

transformed variables qj = Gjzj can be correlated with the object

scores X to Produce the component loadings cj . The name is chosen

in analogy with principal component analysis. They can be depicted

as vectors representing transformed variables in the space of the

object scores (cf. Figure 2). We can also plot, in the same space,

the average rank-one quantifications zjcis, which are the

projections of each category into the space of object scores (cf.

Figure 4). These are different from the ziajs, because the cj are

the correlations of qj with X, while the aj are the correlations of

qj with X - Vo. Thus again the difference is the contribution of

the other variables.

In two-sets canonical correlation analysis it is more usual to

show plots of the canonical variables for both sets, which are the

-4,1G
Y

1
than of the object scores. If there are only two sets, Gay'

and 9212 are orthogonal, and related by a diagonal transformation.

If the number of sets is larger the canonical variables are no

longer orthogonal, and they may differ more fundamentally.

Therefore we prefer object score plots, but one can, of course,

plot canonical variables for each of the sets if this seems

desirable.

0 7
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RELATIONSHIP WITH OTHER MULTIVARIATE TECHNIQUES

It is interesting to consider the relationship between the

OVERALS technirue and other linear and nonlinear multivariate

techniques. We can be brief about the relationship with homogeneity

analysis. If each set contains only one variable, and all variables

are multiple nominal, then OVERALS is identical to homogeneity

analysis. This special case has been implemented in the program

HOMALS (Van de Geer, 1985). If there are only two variables, and

both these variables are multiple nominal, then OVERALS is

equivalent to correspondence analysis.

If each set contains only one variable, but the measurement

levels are mixed, then OVERALS defines a form of nonlinear

principal component analysis. This technique has been implemented

in a separate program PRINCALS (Gift. 1985). The related PRINCIPALS

program of Young, Takane, and De Leeuw (1978) does not have

ovItiple options, but can handle continuous-, variables. PRINCIPALS

is now implemented in PRINQUAL (Kuhfeld, Sari,,, and Young, 1985).

If all variables are single numerical, and each :et contains only

one variable, OVERALS becomes ordinary principal cooponent

analysis.

If there are two sets of variables we move into the realm of

Canonical correlation analysis. In fact if all variables are

considered single numerical OVERALS becomes equivalent to ordinary

canonical correlation analysis. If only one interactive variable is

reduCed to a set of variables by using additivity restrictions,
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while the other interactive variable is left intact (coding

treatment effects), we can use OVERALS to perform multivariate

analysis of variance. If one set of single variables is combined

with a set containing one multiple nominal variable (coding a

partition of the objects), we can perform canonical discriminant

analysis. An OVERALS of two sets of single variables is very close,

but not exactly identical, to the nonlinear canonical correlation

technique CANALS proposed by Van der Burg and De Leeuw (1983), and

Van der Burg (1983). CANALS is an improvement of MORALS/CORALS

proposed by Young, De Leeuw, and Takane (1976).

Canonical analysis techniques with k sets of variables were

proposed in the single numerical case by many authors. Two early

contributors are Horst (1961) and Carroll (1968). Kettenring

(1971), Gifi (1981, chapter 6), and Van de Geer (1986, part IV)

provide reviews. It is possible to think of OVERALS, with all

variables single, as a nonlinear generalization of one of these

generalized forms of canonical correlation analysis. In fact it is

a k-set canonical correlation analysis with optimal scaling. The

difficulty with this interpretation (from the didactical point of

view) is the step from single OVERALS to OVERALS with both single

and multiple quantifications. This step is not very natural, and we

need the notion of copies to bridge the gap between multiple and

single (cf. section on the relationship of OVERALS with eigenvalue

problems). Therefore we have chosen the alternative route of

starting with homogeneity analysis, and introducing OVERALS by

discussing the use of additivity and rank-one restrictions. For the

n9
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other route, via generalized canonical correlation analysis, we

refer to Van der Burg, De Leeuw, and Verdegaal (1984).

APPLICATION OF OVERALS

The data of this study are based on field surveys on chronic

lung disease, carried out at three year intervals between 1972 and

1982 in the Netherlands (Van der Lende et al., 1981; Van Pelt et

al., 1985). The locations were a rural area, Vlagtwedde, and an

industrial town, Vlaardingen, the latter having a much higher grade

of air pollution. The residents of both towns have been questioned,

amongst other things, about their smoking behaviour, their

respiratory symptoms and their personal background. The smoking

behaviour has been operationalized ty four variables: SMO, RATE,

PER, and TIME; respiratory symptoms by five variables: COU, PHLE,

DYS, WHE, and AST. As background variables we used SEX and AGE. The

residence is denoted by RES. The variables and the meaning of the

categories are given in Table 1.

INSERT TABLE 1 ABOUT HERE

There are 2870 individuals sampled from a data base of 3959

individuals under 56 years of age. Starting from the distribution

of AGE for the total data base, vi,.! sampled four groups (denoted MR

men from rural Vlagtwedde, MI = men from industrial Vlaardingen,

and WR, WI for the women) with identical AGE-distributions, so that

30
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there exists no correlation between AGE and SEX x RES. This was

done to avoid trivial relationships, mainly between AGE and RES (on

the average people in rural areas are older).

The goal of the OVERALS analysis was to find a common space in

the four sets determined by the respiratory symptoms, smoking

behaviour, personal background, and residency.

We did four analyses, starting with 2870 individuals and all

variables single nominal, except AGE which was taken as single

ordinal. The same analysis was repeated for men and women

separately. Finally another analysis on all 2870 individuals was

performed, but now the variables AGE and SEX were combined to one

interactive variable AGE x SEX, taken as multiple nominal, and the

other variables were taken as single nominal. We considered only

two-dimensional solutions. We discuss the results of the analyses

with the help of blots. We show transformations of several

variables (Figure 1), component loadings (Figures 2, 5, and 6),

object scores (Figures 3 and 7), and average rank-one

quantifications (Figure 4). In addition we have two tables which

give correlations (Table 2) and eigenvalues (Table 3). We do not

show the weights as they are difficult to interpret due to the fact

that they 'incorporate' the correlations with the other variables

in the set (cf. Geometry of OVERALS, or Thorndike, 1977).

INSERT FIGURE 1 ABOUT HERE
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INSERT TABLE 2 ABOUT HERE

An overall impression of the first analysis (men SI women I) is

obtained from the component loadings (Figure 2). However, before we

are able to intreprete this figure we have to study the

transformations of the variables. We find that the single nominal

restriction for most variables results in almost ordinal

transformations. The exceptions are the smoking behaviour variables

RATE, PER and TIME. Transformation plots of all smoking variables

and of AGE are given in Figure 1. The violations of ordinality

occur mainly in the first categories of RATE, PER and TIME, which

correspond to people who have never smoked. Due to the nonlinear

transformations of the variables we expect differences between the

correlations before and after transformation (respectively upper

and lower triangle of Table 2). However the overall structure of

the correlation matrix does not change a great deal, except for the

submatrix of smoking habits. They form a tight cluster before

transformation (mainly related to sex). After transformation they

split up into age-related smoking habits (PER and TIME) and sex-

related smoking habits (SMO and RATE). This is mainly because of

the quantification for the non-smokers category.

INSERT FIGURE 2 ABOUT HERE

The component loadings, which are the correlations between

object scores and transformed variables, are plotted as vectors in

32
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Figure 2. They point towards a high quantification. As we have

seen, this means that they point to individuals having high

category numbers for all variables. We only have to keep in mind

that the categories for non-smokers are quantified around zero, and

that ex-smokers and current smokers have the same quantification in

this solution. The component loadings are interpreted in the usual

way. Thus a high age corresponds to a long period of smoking and to

severe dyspnoea. The respiratory symptoms, except DYS, are much

more related to SEX than to AGE. As the vectors for symptoms and

SEX Point into opposite directions their relationship is negative

Tnus in this sample men more often have symptoms than women. The

SEX-vector and the SMO-vector are opposite too, thus also men in

this sample are more often ex-smokers than women.

INSERT FIGURE 3 ABOUT HERE

In addition to plotting variables we plotted individuals by

their object scores (Figure 3). Together with tne object scores we

present the 90-percentile contours (equiprobability ellipses) of

each of the four SEX x RES groups MR, MI, WR, and WI. The figure

shows that men differ from women. Also that the difference between

Vlagtwedde and Vlaardingen is larger for women than for men. To

obtain more insight in the plot of object scores with respect to

the other variables we projected single category quantifications of

all variables onto the space of object scores (Figure 4). Above we

referred to these projections as average rank-one quantifications.

3J
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The categories of the variables lie on lines with the same

direction as the vectors of Figure 2. To keep Figures 3 and 4

legible, they have been plotted with different scales. In Figure 4

the categories are indicated by the first (or first two) letters of

their variable name and their category number (RE a RES, S a SMO, R

a RATE, P = PER, T = TIME, A a AGE, SE a SEX, C = COU, PH = PHLE, D

DYS, W = WHE, AS = AST). Only the categories in the middle are

left out of the plot. Thus categories which are missing in the plot

have quantifications near zero.

INSERT FIGURE 4 ABOUT HERE

Figure 4 shows how the categories are quantified, and tells how

to interpret the object scores. For instance at the left, above the

middle, we see categories for older people (AGE-categories A9 and

A10) who most likely smoked already a long time (PER-categories P8

to P13), or who stopped smoking long ago (T3 and T4, category T2

does not occur), and probably with a severe dispnoea (03). This

means that we find object scores for people characterized in this

way at the left side of Figure 3. In the slightly oblique vertical

direction Figure 4 shows no variation in AGE but much variation in

the respiratory symptoms COU, PHLE and WHE, in the smoking

variables RATE and SMO, in SEX and in RES. In the lower part of

Figure 4 we find categories for people with respiratory symptoms

(C2, PH2, W2, W3), most probably men (SE1) living Ii Vlaardingen

(RE2) who smoke(d) a lot (S2, S3, R7, R8, R9). In the upper part we
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find categories for females (SE2) and for never smokers (Si) or

very light smokers (R2, R3, R4). Most likely they have no

respiratory symptoms (W1, and Cl, PH1 in the center). Thus in the

plot of the object scores we find healthier people, apart from

heaving dyspnoea, more at the top. They are more often women than

men, do not smoke or lightly so, live more in Vlagtwedde than

Vlaardingen, and are found in all AGE categories.

Differences between men and women with respect to smoking habits

and respiratory symptoms are a dominant feature in this solution.

We therefore reanalyzed the data separately for men and women. We

present the plots of component loadings in Figures 5 and 6. Note

that the two plots are on the same scale. In both cases the

respiratory symptoms (except DYS) are independent from AGE, and

strongly related to RATE. Compared to Figure 2, the variable DYS

has moved away from from AGE, apparently because we have controlled

for SEX. In fact shortage of breath (DYS) occurs equally often in

women as in men and correlates mainly with age. It also correlates

with the other symptoms, but in the two-dimensional solution of

males and females together there was no 'place' to show that.

INSERT FIGURES 5 AND 6 ABOUT HERE

Figures 5 and 6 show that the smoking period, PER, correlates

more with AGE for men than women. Also we see that SMO has a

different direction and length for the two solutions. This is a

reflection of the fact that between 1972 and 1982 most older women
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do not smoke, whereas the neversmokers in males are usually the

younger ones.

Another difference between the solutions for men and women is in

the role of residence. ror men this variable is totally

unexplained, for women it is very pronounced in the solution. The

respiratory symptoms correlate with the rate of smoking for both

men and women, but they only correlate with residence for women

(Figures 5 and 6). This indicates that fewer women in Vlagtwedde

smoke than in Vlaardingen, or they smoke less. It seems therefore

that the difference in smoking behaviour between males and females,

and between the two residences among females, is a more important

predictor than place of living as such.

Up till now we found a strong effect of AGE (independent from

symptoms, except DVS) both in the total analysis and in the

separate analyses for men and women. We also found a large

difference between males and females. Therefore we reanalyzed the

data but in this case with the interactive variable AGE x SEX

taken as multiple nominal (men & women II). The results confirm the

conclusions of the first analysis. We show the categories of AGE x

SEX (M1,...,M10,W1,...,W10) in the space of object scores (Figure

7). Each category point is in the centroid of (the object scores

of) all individuals scored in that particular category. The

Quantifications form a letter V bend leftwards. In fact north-west

is still the direction of increasing age, and north-east still the

direction of SEX-difference. Categories M1 and W1 overlap, W2 and

W3 have changed order, as have W9 and W10, and M9 and M10. But the
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interchanges are, on the whole, minor. The category quantifications

of the other variables are very similar to those of Figure 4, we do

not show them. Although there is an interaction effect between SEX

and AGE (the younger females and males differless from each other

than the older ones do) we can easily describe the effect by two

separate variables as the results of the two analyses do not differ

substantially.

INSERT FIGURE 7 ABOUT HERE

Summarizing the four analyses we can say that we found a

relationship between smoking behaviour and respiratory symptoms for

both males and females. Only for women we also found an effect of

residence with respect to respiratory symptoms. This effect can be

reduced to a difference in smoking habits between women from

Vlaardingen and Vlagtwedde. Sex is correlated with both symptoms

and smoking behaviour. Age is mostly related to smoking variables

with a time effect, such as TIME and PER. The symptoms are not

related to age (in the age range we have considered), except

shortage of breath. We found an interaction effect between AGE and

SEX. Younger people differ less in symptoms and smoking habits than

older people do. The nonlinear transformation of the variables

(first analysis) has effected mostly the smoking habit variables.

Mainly due to the quantification for the category non-smokers the

cluster of smoking habits falls apart after transformation. For

completeness we finish this application with an overview of the
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generalizes canonical correlations (Table 3). Perfect homogeneity

corresponds with a correlation of 1, and no relation at all with a

canonical correlation of 1/k. From Table 3 it can be seen that for

men the first dimension is much more important than the second one.

For the other analyses the two dimensions are more of equal

importance.

We emphasize that this example is only a tiny demonstration of

the capabilities of OVERALS. There are so many choices and options

in the program, that we can never cover the complete range of

possibilities. We refer to Gifi (1981) for other examples. Many

applications of special cases of OVERALS can be found throughout

that book.

DISCUSSION AND EXTENSIONS

The OVERALS algorithm opens many possibilities in data analysis.

It covers most of the usual linear and nonlinear multivariate

analysis techniques. But this generality comes at a price. In the

first place there is the possibility of local minima in some of the

more complicates special cases. It is necessary to study the

seriousness of this probm In more detail in thn future. In the

second olace we do not have information on the stability of the

results. For several special cases of OVERALS (two variables, or k

sets each with one variable) research has been done, however for

the more general cases of OVERALS not very much is known. De Leeuw

and Van der Burg (1985) make a start by means of randomization
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methods. They compare several methods and obtain promising results.

They investigate the stability of generalized canonical correlation

in a small study. More work in this direction has been planned. Van

der Burg and De Leeuw (1985) have investigated ways of computing

confidence regions for the OVERALS results. For this they use the

Delta method combined with the Jackknife. Their results are

encouraging, but still very preliminary.

Another apparent disadvantage of the OVERALS method is the fact

that it can only handle complete data matrices. We did not discuss

missing values in this article. The computes program OVERALS does

handle missing data, however, on the DIMS of equations given by

Gifi (1981, chap. 6). Verdegaal (1985, 1986) gives an extensive

discussion of the OVERALS program with missing data.

The nonlinear transformations in OVERALS are a real extension of

the usual linear transformations in multivariate analysis. However

the transformations we use are necessarily step functions. This can

be a disadvantage in some cases. To make transformations more

smooth we can, for instance, use splines. De Leeuw, Van

Rijckevorsel, and Van der Wouden (1981) have implemented splines in

the principal component algorithm. We plan to integrate these

transformations into OVERALS as well.

With these extensions OVERALS can effectively be applied in even

more data analysis situations.
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TABLE 1

Variables from the study of chronic lung disease.

set 1 RES: Residence, (1) Vlagtwedde, (2) Vlaardingen.

set 2 SMO: Smoking, (1) never smoker, (2) ex-smoker, (3) current
smoker.

RATE: Rate of smoking (amount of tobacco), (1) never smoker,
(2) low rate, ..., (9) high rate.

PER: Smoking period, (1) never smoker, (2) short period,
(13) long period.

TIME: Time since last cigarette, (1) never smoker, (2) long
ago, ..., (5) recently, (6) current smoker.

set 3 AGE: Age discreticized into periods of 3.5 years, (1) age
19 - 22.5, , (10) age 52.5 - 56.

SEX: Se;, (1) male, (2) female.

set 4: COU: Coughing, (1) no, (2) persistent.
PHLE: Phlegm, (1) no, (2) persistent.

DYS: Dyspnoea or snortage of breath, (1) no, (2) slight/
moderate, (3) severe.

WHE: Wheezing, (1) never, (2) ever, (3) severe.

AST: Asthma, (1) ever, (2) never.
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TABLE 2

Correlations before and after transformation, respectively upper and lower
triangle, men and women I

RES .00 .04 .03 .02 .00 -.06 .09 .11 .05 .04 .04

SMO .04 .75 .7i .97 -.07 -.32 .18 .12 .02 .17 -.02

RATE .02 .03 .64 .74 -.03 -.39 .25 .18 .10 .20 -.01

PER .02 .01 .26 .73 .41 -.43 .19 .15 .14 .18 .01

TIME -.07 .03 .38 .17 -.08 -.34 .16 .11 .02 .16 -.01

AGE .00 -.06 .01 .67 -.15 .00 .06 .07 .22 .08 .04

SEX -.06 -.35 -.23 -.26 .03 .00 -.10 -.09 .06 -.06 .01

COU .09 .15 .20 .12 .05 .06 -.10 .53 .24 .31 .17

PHLE .11 .10 .16 .11 .04 .07 -.09 .53 .25 .31 .13

DYS .05 .02 .12 .19 .01 .23 .06 .23 .24 .33 .20

WHE .04 .15 .13 .09 .04 .07 -.06 .28 .27 .29 .31

AST .04 .00 -.02 .02 -.04 .04 .01 .17 .13 .19 .32

RES SMO RATE PER TIME AGE SEX COU PHLE DYS WHE AST
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TABLE 3

Generalized Canonical Correlations.

men & women I

men
women
men & women II

1 2

.469 .390

.510 .317

.426 .362

.486 .398
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Figure 1. Transformations of smoking behaviour variables and AGE,

men b women I.

Figure 2. Component loadings, men b women I.

Figure 3. Object scores and 90-percent contours for SEX x RES, men

women I. (M = men, W = women, R = Vlagtwedde, I =

Vlaardingen).

Figure 4. Average rank one quantifications, men b women I. (RE =

RES, S = SMO, R = RATE, P = PER, T = TIME, A = AGE, SE =

SEX, C = COU, PH = PHLE, 0 = DYS, W = WHE, AS = AST,

1....,10 = category numbers).

Figure 5. Component loadings, men.

Figure 6. Component loadings, women.

Figure 7. Object scores and category centroids for AGE x SEX, men

& women II. (M = men, W = women, 1,...,10 = age

categories).

49



www.manaraa.com

z0
0

a

U.

a1

2

0
a

SMO

3

VI

a

a

aoo

ORIGINAL SCORES

PER

V3)1/5

I.OH

,s'

2 4 I 6 10 12

Al TE

2 4 6
ORIGINAL SCORES

TIME

0,

iiii517
ORIGINAL SCOME5 onIsiNsi SCORES

AGE

2 4 8 8 10
ostoihnt. SCORES

FIGURE 1

50



www.manaraa.com

FIGURE 2

51



www.manaraa.com

4,
4,

4
9

q'



www.manaraa.com

FIGURE 4
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FIGURES 5 AND 6
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